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so that the misfit is small, e.g., in a Euclidean sense over all sensor measurements

kF(s)�G(s)k22 < ✏,

where ✏ is a small positive number. Neural network based inversion is common practice in machine
learning [52], dating back to the late 80’s [75]. This powerful learning paradigm is also increasingly
used for flow reconstruction, prediction, and simulations [46, 69, 42, 17, 32, 70]. In particular, deep
inverse transform learning is an emerging concept [56, 41, 1, 73], which has been shown to outperform
traditional methods in applications such as denoising, deconvolution, and super-resolution.

Here, we explore shallow neural networks (SNNs) to learn the input-to-output mapping between
the sensor measurements and the flow field. Figure 1 shows a design sketch for the proposed
framework for fluid flow reconstruction. We can express the network architecture, which we denote
as shallow decoder (SD), more concisely as follows:

s ! first hidden layer ! second hidden layer ! output layer ! bx.

SNNs are considered to be networks with very few hidden layers. We favor shallow over deep archi-
tectures, because the simplicity of SNNs allows faster training, less tuning, and easier interpretation
(and also since it works, and thus there is no need to consider deeper architectures).

There are several advantages of this mathematical approach over traditional scientific computing
methods for fluid flow reconstruction [18, 24, 13, 71, 50]. First, the SD provides a supervised joint
learning framework for the low-dimensional approximation space of the flow field and the map from
the measurements to this low-dimensional space. This allows the approximation basis to be tailored
not only to the state space but also to the associated measurements, preventing observability issues.
In contrast, these two steps are disconnected in standard methods (discussed in more detail in
Section 2). Second, the method allows for flexibility in the measurements, which do not necessarily
have to be linearly related to the state, as in many standard methods. Finally, the shallow decoder
network produces interpretable features of the dynamics, potentially improving on classical proper
orthogonal decomposition (POD), also known as principal component analysis (PCA), low-rank
features. For instance, Figure 2 shows that the basis learned via an SNN exhibits elements resembling
physically consistent quantities, in contrast with alternative POD (PCA-based) modal approximation
methods that enforce orthogonality.

Limitations of our approach are standard to data-driven methods, in that the training data should
be as representative as possible of the system, in the sense that it should comprise samples drawn
from the same statistical distribution as the testing data.

The paper is organized as follows. Sec. 2 discusses traditional modal approximations techniques.
In Sec. 3, we briefly discuss shallow learning techniques for flow reconstruction. Then, in Sec. 4,

Figure 1: Illustration of the shallow decoder which maps a few sensor measurements s 2 R5

to the estimated field bx 2 R78,406. In other words, this neural network based learning methodology
provides an end-to-end mapping between the sensor measurements and the fluid flow field.


